离心式冷水机组喘振的原理与预防方法
2025-01-07 14:25:21
关于佰诗得
总部上海,德国Phoenix电气集团投资,中德合资公司,国家高新技术企业、中国节能协会节能服务产业委员会常务委员单位!广东省数字化节能减碳联盟发起单位! 佰诗得拥有一支由国际著名暖通专家领衔的、骨干成员来自跨国公司的专业团队,在暖通复杂大系统优化、在线热平衡、热回收、大数据挖掘,物联网、智能寻优技术等方面具有丰富的经验。公司攻克了工业用能端最难的技术壁垒-成功研发了UE²-暖通空调超高效优化控制系统并获得国家专利,帮助客户解决暖通空调系统中常见的末端热平衡、湿度控制、空气品质、机房自动寻优等棘手问题,同时充分利用工艺余热,显著降低冷、热源系统能耗。
公司在深圳、广州、海南、成都均建立了团队,就近、快速服务于我们的客户。在电子、电池、太阳能光伏、生物制药、大型商业等行业拥有广泛的成功经验和案例
2025 02-18
温度与显热和潜热的关系,为何制冷要在低温下蒸发和高温下冷凝
[list:subtitle]
温度是衡量物体冷热程度的物理量,它反映了物体内部分子热运动的剧烈程度。显热和潜热是热量传递的形式,其中显热传递表现为温度变化,潜热传递表现为相态变化而温度不变。一、温度与显热的关系显热是指物质在不发生相变(状态变化)的情况下,物质由于温度变化而吸收或放出的热量。例如,我们将一杯水由20℃加热到80℃,水
2025 02-05
什么是AI,AO,DI,DO?
[list:subtitle]
AI、AO、DI、DO是工业控制系统中常见的信号类型缩写,分别对应不同的输入输出功能,具体定义及功能如下:AI(Analog Input,模拟量输入)定义:接收连续变化的物理量信号,并将其转换为数字信号供控制系统处理。信号类型:通常为电压(如0-10V)或电流(如4-20mA)信号。- **应用场景**:&nb
2025 01-07
离心式冷水机组喘振的原理与预防方法
[list:subtitle]
喘振是单级离心式制冷压缩机(即速度型制冷压缩机)所特有的一个特征。它表现在当单级离心式制冷压缩机在低负荷下(额定负荷的25%以下)运行时,容易发生“喘振”,造成周期性地增大噪声和振动,严重时甚至损坏压缩机。这可能是由单级离心式制冷压缩机特殊结构和运行方式决定的,因为它是一种速度型制冷压缩机,而非容积型
2024 11-26
制冷机组冷量与能耗关系及节能措施
[list:subtitle]
制冷设备的产冷量与系统运转工况有着直接的关联。对于结构、转速以及制冷剂种类均已确定的压缩机而言,其产冷量和能耗会随着运转工况的改变和操作管理的不同而发生显著变化。一、产冷量与能耗的关系蒸发温度的影响:随着蒸发温度的降低,压缩机的压缩比会增大,进而导致单位产冷量的能耗增加。具体而言,当蒸发
2024 11-20
关于水泵的气缚?和气蚀?
[list:subtitle]
气缚和气蚀是两种在离心泵运行过程中可能遇到的特殊现象,它们不仅影响泵的正常工作,还可能对泵造成损害。以下将详细阐述这两种现象的产生原因及预防措施:气缚现象产生原因:离心泵在启动前如果没有完全灌满输送的液体,或在运转时吸入空气,气体密度小于液体,无法有效产生将液体吸入泵内的离心力,叶轮中心区所形成的低
2024 11-07
水泵流量、扬程、功率和效率之间有什么关系?
[list:subtitle]
水泵(Water Pump)是输送液体或使液体增压的机械,通常是利用电机或其它动力设备驱动叶轮转动,把液体从低处吸入后经过叶轮的作用使其受到动能转化而产生压力,从而输送液体到高处或远距离。水泵的主要性能参数有:流量、扬程、功率和效率等。1水泵性能参数之流量水泵流量是指水泵单位时间内输送液体的体积或重量,用符号Q
2024 08-26
制冷系统的调试故障处理
[list:subtitle]
高压报警怎么办??1、原因分析:2、如何处理??1)、检查高压压控无问题,无误报警;2)、用手触摸制冷系统冷凝器(风冷冷凝器或者水冷冷凝器),如果冷凝器很烫,说明冷凝器换热效果不好,此时可以检查冷却水(或者冷凝风扇)的问题;3)、尝试放掉一点制冷剂试试看看!~~经验二低压报警怎么办??1、原因分析:蒸发温度
2024 09-23
空调冷冻/冷却水清洗方法、流程、配方、判断与注意事项
[list:subtitle]
冷冻水和冷却水系统的水质不良不仅会导致传热管内结垢,影响热交换效率和降低机组性能,还可能腐蚀传热管,引发重大故障。因此,在维护保养时,应遵循GB50050-1995《工业循环冷却水处理设计规范》的要求进行水质处理。若水质未达到规定标准,则需进行水质处理。 冷冻水系统为封闭循环,几乎无水量损失,但存在
在动态工况下,由于系统内部分末端的控制阀关闭时,导致系统内的压力 升高,使得其他盘管的水量增加,而根据盘管的散热特性,这种流量的增加并 不能带来与之相配的散热量的增加,而使得这些盘管所配用的调节阀动作幅度 小于将盘管水温降限制与设计值所需的动作幅度;此时导致系统处于低温差大 流量工况,而水泵功耗远大于实际所需。
同样对风机盘管的小型末端采用开关控制也会导致在部分负荷时流量大于 实际所需。对于盘管而言,即使通过流量为额定流量的 200%时,盘管的热输出 也仅增加 10%。从而使水在通过盘管时不能充分换热,导致系统出现小温差和 过流现象。在 50%系统负荷时,由于散热盘管的热性,盘管实际仅需 18%的流量,而如果采用开关控制,则阀门会开启 50%左右的平均时间,在 50%的开启时 间内通过 100%的流量(或更多),相对平均的流量为 50%,远大于实际所需的18%。。
后果:此类水力平衡问题的静态部分,往往是由较为保守的水泵选型以及 管道水力计算造成,盲目放大管径以及对于水泵扬程附加了过多的安全系数。 该问题可以通过对系统水力平衡状态进行解决,从而改善水泵工况点,降低水 泵功耗。盲目更换水泵、或者为水泵加装变频装置,造成高额投资及运行费 用。
这种情况在上世纪 80~90 年代,空调开始大规模进入民用建筑,设计院的 经验尚不丰富,加之人们传统的观念,选型往往偏大,而动态的过流问题,会 造成水泵的功耗大于实际所需。
3.3室内温度波动、稳定时间长
原因:动态。
描述: 由于暖通换热系统及控制系统的特性要求,需要控制阀门的控制信 号与盘管热输出之间为线性关系。系统内平衡阀与控制阀选择不当, 会导致阀 门控制信号与热输出之间的关系成为上抛型。在阀门小开度时,造成室内温度 波动;而在阀门大开度时造成室内温度的稳定时间过长。
后果: 温度波动及温度的稳定时间过长,会导致室内舒适度下降,同时导 致控制阀门的执行机构的“过劳”。
3.4冷机小温差综合症
原因:动态及其他
描述:当系统出现大流量小温差运行时,传统的自动控制系统会根据流量
决定冷机启停台数,而开启的冷机均工作于部分负荷下,而冷机效率在接近满 载时最高,部分负荷时效率会大幅下降。
而出现大流量小温差有很多原因,除去采用一次泵定流量系统、负荷侧变 流量冷机侧定流量系统、二次泵系统这三种系统本身的原因外,另一个更重要 的原因是未根据变流量系统选择正确的平衡阀和调节阀。而这类问题往往会被 忽视,或归因于冷机本身,而无法得到正确解决。部分负荷时,传统空调系统 的内温差远低于设计值。并且随着负荷的降低,情况进一步恶化。这种典型的 暖通空调系统,全年大部分时间是处于 10%~50%的部分负荷运行中的。
后果:冷机在小温差工况下的效率降低,导致耗能大幅增加,严重时,离 心机等对负荷调节比较敏感冷机,会导致冷机的喘振和损坏。同时由于系统小 温差大流量运行,系统的输送效率比较低,水泵功耗高,由于冷机和水泵能耗 在空调系统中占有很高的比重,因此对这两者的优化运行是提高整个系统效率 的关键。
实例分析:在某电子厂房项目中,空调水系统运行初期,会发生整个机房 乃至附近房间噪声明显加大,甚至机组和楼板发生共振,震动随着墙体和管道 传到主车间,当整个系统有负荷变化的时候,这种情况就会好转。为了解决这 一现象,对机房内的管道增加了许多固定支架,但是效果甚微,然后就集中项 目部丰富经验的工程师,一起查找原因,最后经过对整个系统的排查,认定了 是低负荷运转而使冷机发生喘振现象。
因为离心式制冷机组,在压缩机吸气口压力或流量突然降低,低过最低允 许工况时,压缩机内的气体由于流量发生变化会出现严重的旋转脱离,形成突 变失速,这是叶轮不能有效提高气体的压力,导致压缩机出口压力降低,系统 管网的压力没有突然降下来,使得气体从压缩机倒流,系统管网压力低至压缩 机出口压力时,气体向系统管网流动,如此反复,就出现了喘振现象。
为了解决这个问题,为每台冷机均设置了动态平衡阀,对系统水力分配情 况进行调节,当系统负载处于部分运行时,冷冻水流量减小的情况下,动态平 衡阀则根据所负担的支管路压力变化情况自行调剂其开启度,循环泵工作频率 亦随之变化,避免了大流量小温差运行工况,冷机质量效率提高,减少了冷机 的工作时段,同时减少了水泵的功耗,并降低了系统的运行成本。
4水力平衡方案的要点
系统的水力平衡方案或部件需要解决以下问题:
解决静态水力平衡问题,防止因静态水力问题导致冷热不均及水泵过流问
题;适应末端变负荷运行的要求,为末端提供从低负荷到全负荷全过程稳定的 水力工况;适应末端变负荷运行的要求,系统部分负荷运行时,导致系统压力 波动时,能将此压力波动吸收、屏蔽,避免影响末端调节阀两端压力波动;同 时防止欠流风险,最大程度发挥变流量系统的节能潜力;适应末端变负荷运行 的要求,提高末端调节阀的控制精度;适应系统变流量运行的要求,为冷机及 水泵提供高效运行的基础条件,消除系统小温差大流量运行现象。
5 空调水力平衡应该注意的问题:
5.1空调水系统应优先采用一次泵变流量系统
由于空调的水力平衡影响到整个系统的方方面面,同时也受到各方面的影 响,空调水系统应采用变流量系统,应优先采用一次泵变流量系统,以最大限 度提高系统在部分负荷时的效率;泵的变频控制应采用最不利环路定压控制, 以发挥系统节能潜力。系统水泵选择以及运行中优化设定时,应以计算和实测 相结合,避免保守的水泵选型造成系统功耗增加。
5.2安装静态或动态平衡阀
结合工程实际情况,定流量系统用静态平衡阀,就是说在终端用户使用压 力和流量变化不大的情况下最好使用静态平衡阀,既达解决问题又起到了节约 的目的。
变流量系统用动态压差平衡阀,即在终端用户使用压力和流量变化较大的 情况下使用动态平衡阀,在一定的压力范围内限制末端设备的最大流量或自动 恒定流量,在大型、复杂、空调负荷不恒定的工程中,简化了系统调试过程, 缩短了调试时间,特别是在异程水系统中,可以很容易的实现水力工况平衡, 满足设计环境温度的要求,并且在空调系统的运行中,末端设备不受其他末端 启停的影响。在大型集中空调系统中,在空调设备(空气处理机及风机盘管) 末端装置设置平衡阀,通过三通或两通电动阀保证设备所需流量,平衡阀就实 现了水力工况调节。在冷热源、冷却塔、水泵等处设计管线受限时,用平衡阀 来避免负荷偏载,保证设备正常运行,精确的控制室内的温度。
5.3动态平衡阀不应多级设置
在空调设置中,手动调节阀是多级设置的,而按照这一做法多级设置动态 平衡阀是不对的,如果下级的一个或多个设备关闭电动阀,而上级平衡阀仍保 持流量不变,则会造成下级未关闭的设备流量增加,不但加大了水流噪声,而 且也增加了不必要的投资。
结论
定流量系统与变流量系统是多种多样的,在这里只简单地分析几种典型的 形式。需要注意的是,在实际的工程设计中,应根据工程投资和系统的精度要 求合理地选用水力平衡设备,既要满足工程设计和技术规范要求,同时满足最 小投资和最低运行成本的方案。
2025 05-19
暖通空调系统水力平衡解析
[list:subtitle]
空调系统中的水力输配由于管道长度不同, 沿程阻力和局部阻力的不同, 而产生了的实际流量与理想流量的差异,使得流量分配不均匀,将导致空调系 统其他条件参数也会受到影响。所以系统的水力平衡问题是空调系统中是非常 重要的。正文1空调系统水力平衡的意义水力平衡的空调系统是运行节能和高效的,为了
2025 03-27
关于洁净室空气净化系统优化策略
[list:subtitle]
一、系统设计优化合理布局与分区:根据洁净室的工艺流程和洁净度要求,合理划分不同洁净等级的区域,减少高洁净度区域的面积。例如,将污染源集中布置在特定区域,便于局部加强净化措施。优化气流组织:合理布置送风口、回风口和排风口,确保气流均匀分布,避免涡流和死角。对于单向流洁净室,采用满布高效过滤
2025 03-04
看DeepSeek怎样对暖通智能化控制、节能及系统进行优化
[list:subtitle]
1. 智能控制系统优化 实时动态调控:利用AI算法(如强化学习)分析建筑内外的环境数据(温湿度、人流密度、空气质量等),动态调整暖通设备的运行参数,实现精准控制与节能。 预测性维护:通过传感器监测设备运行状态(如压缩机振动、制冷剂压力),结合AI模型预测故障风险,提前预警并规划维护计
2025 01-14
低露点转轮除湿系统的机理、配置和优化
[list:subtitle]
一、工作机理1. 吸附过程- 转轮结构:转轮由多个扇形区域组成,每个扇形包含一层或多层吸附剂。当潮湿空气流经这些吸附层时,水蒸气被吸附到吸附剂表面。- 物理吸附原理:利用吸附剂对水分子的强大亲和力,在常温条件下将空气中水分捕获并储存在内部。2. 再生过程- 加热解吸:为了恢复吸附剂的吸附能力,一部分